

First and foremost ...

Is there a particular grinding problem or issue that you would like to see addressed today?

THERE'S NOTHING WORSE THAN SITTING THROUGH A PRESENTATION AND WALKING AWAY "EMPTY HANDED"!

Presentation Outline

- The Coffee Quality Cycle
- Brewing Theory:
 - Key factors in Coffee Brewing or Extraction:
 - Particle size
 - Particle uniformity
 - Time
 - The "Big Picture" in Coffee Brewing
- Effect of Temperature on Ground Coffee
- Analyzing and Testing Ground Coffee
- Grinding for Pods and Espresso Coffee

Questions and Discussions

Proper coffee grinding is a most essential, and often neglected, part of the coffee quality process.

So let's explore the process from the beginning with selected coffee quality tipping points ...

Theoretical Coffee Quality = 100%

Maximum Possible Coffee Beverage Quality = 100%

Theoretical Coffee Quality = 100%

Maximum Possible Coffee Beverage Quality = 100%

We cannot improve on Mother Nature!

Coffee Transportation

Coffee Roasting

Theoretical Coffee Quality = 100%

Processing

Transportation

Tree

Maximum Possible Coffee Beverage Quality = 100%

Cup

The Coffee

Quality Cycle

Brewing

Grinding

Warehouse

Roasting

The great thing about cupping coffee is that it pretty well defines the quality of the bean.

BUT, the tough part is grinding the coffee to achieve the same quality of the bean to the brew.

We don't brew whole bean coffee!

Proper Extraction and Strength

Coffee beans are composed of soluble solids, which must be extracted into the coffee brew.

Proper Extraction and Strength

The amount of soluble solids extracted from the coffee bean into the brew must be the correct amount or percentage.

This is a much magnified view of a ground coffee particle using an electron microscope.

The cellular walls are about 30 microns in diameter, and the colloidal material fills the voids within the ground coffee and cellular structures. Part of this colloidal material is what we want to extract, but with a limit.

Proper Extraction and Strength

coffee particle's soluble solids is 18-22% Ideal Brew Strength is 1.15-1.35% brewed solids

One Example of Overextraction is Turkish Coffee

... Where the entire bean is ground and <u>dissolved</u> into hot water.

... Excess solids settle on the bottom of the cup, which is typically considered undrinkable.

The Center of the Universe for Coffee Grinding is EXTRACTION! Specifically ... PROPER EXTRACTION!

The key to PROPER EXTRACTION is creating, through GRINDING, the IDEAL EXPOSED COFFEE SURFACE AREAS

Effect of Grind Size on Surface Area

 $1 \text{ Bean} = 3.4 \text{ cm}^2$

2 Particles = 4.4 cm^2

4 Particles = 5.4 cm^2

Grind Comparison

Grind Sizes

- Typically expressed in:
 - Mesh
 - Microns (um)

25,400 microns = 1 inch

or

100 microns = 0.004 Inch = Thickness of One Hair!

Average Particle Size by Grind

Average Size vs. Surface Area (1 Bean = 3.4 cm² = Size of a Postage Stamp)

Surface Area Increases as Brewing Time Decreases!

Conclusion #1:

Ideal extraction is a function of proper particle size for the brew time.

The Importance of Grind Uniformity

Typical Ground Coffee Particle Size

24,500 microns = 1 inch

The Importance of Grind Uniformity

Typical Ground Coffee Particle Size

24,500 microns = 1 inch

Grind Uniformity Comparison

Non-Uniform Particle Size

Uniform Particle Size

Uniform vs. Non-Uniform Coffee Grind

Roller vs. Disc Grinder

Impact of Improper Grinding Practice on Grind Quality

(Poor Methodology, Excessive Wear, etc.)

Conclusion #2:

Ideal extraction is a function of proper particle size uniformity.

Optimal Brew Time vs. Particle Size

Brew Time vs. Particle Size to

Achieve 20% Extraction Rate

Effect of Extraction Time on Taste

Effect of Cycle Time on Taste

TIME

Courtesy of the Coffee Brewing Center

Conclusion #3:

Ideal extraction is a function of proper brew time for the method and grind.

Macro Grind Challenge

The "Gold Cup" Standard Calculation

How do we calculate brewed solids?

- 1. Use 64 oz. of water for brewing
- 2. Subtract water absorbed in coffee grounds (6 fl/oz.)
- 3. Use 3.75 oz. of ground coffee to extract 20% solids
- 4. Brew to "Gold Cup" Standard that will extract 20% of solids: 20% x 3.75 oz. = 0.75 oz.
- 5. Calculate brewed solids as percentage of liquid: 0.75 oz./58 oz. = 1.3%

Evaluation of the <u>same grind</u> (average particle size) but <u>different uniformities</u>

EXTRACTION- Solubles Yield

The Key Principals of Coffee Extraction

- The <u>rate</u> of soluble solids extraction from a coffee particle is directly related to the amount of <u>exposed</u> <u>surface area</u> to the hot water.
- The <u>time</u> that the hot water will be exposed to the coffee particle must be directly proportional to the <u>exposed</u> <u>surface area</u>, or particle size, of the ground coffee.
- If <u>particle size</u>, <u>uniformity</u> and <u>brewing time</u> are matched correctly, with all other factors being equal, a <u>20% extraction rate can be achieved.</u>

Ideal Matrix of Grind vs. Time

Grind

Brewed Coffee Taste Profiles

Ideal Matrix of Grind vs. Time

Grind

n Butanal		Methoj sconne	179 Luter I		Commosid	top of Coffee	
				Volatiles and Aromatics			
Aldehyd			5		Ľ	and Law work	
P H 14 2 H 2 B 0- 54 P1 3-	ropanal Butanal obetanal opentanal Methylbuts Hexanal Methylbut- enaldehydd Tolualdehy Licylaldehy hesylacetal Methyl-2-b	inal Z-enal z de de de byde wienal		276 133 134 43 43 below 30 below 30 below 20 below 20 below 20 below 20 below 20 below 20 23	5	Methyl Sermane Methyl scanate Methyl scanate Methyl benanate Methyl benanate Boncyl formate y-Butyrolocione Crotosofactone Crotosofactone Acetol scetate Bctan-2-one-1 yl sce Me, hyl scrothate Isopropyl fivmate Isopanyl scriste Methyl phenylacetat	
Substan	nces with	vapor presi	ur es below	500 mm. Hg. at 2	orc. / 15 ,	'henois	

Temperature Rise During Grinding

Temperature Rise During Grinding

One Example of the Results from a Water-Cooled Disc-Style Grinder

Disc-Style Coffee Grinder

Is Evaluating Ground Coffee "By Eye" Reliable?

What do you see?

What do you see?

They're the same length.

Which box is bigger?

They're both the same size.

Is this line straight?

Which grind is smaller?

This one.

Analyzing and Testing Ground Coffee

Ro-Tap Calculation

TEST #	1		
DATE:	25-Apr-03		
N O T E S	Fine Drip Grind Sample		
MES H	grams %		
(Tyler)			
10	0.6	0.6%	
14	4.4	4.4%	
20	28.9	28.9%	
28	42.2	42.2%	
PAN	23.9	23.9%	

Ro-Tap Graph

Laser Particle Size Analysis

Principle of Laser Particle Size Analysis

Laser Analysis Results

Two Different Fine Grinds

The MPE Single Sieve "Hand" Ro-Tap Method

Weigh your results using a portable scale.

Note: Use Roller-Style Reference Chart for Roller-Style Coffee Grind Results

Copyright MPE, 2009

Note: Use Roller-Style Reference Chart for Roller-Style Coffee Grind Results

Copyright MPE, 2009

SIZE CONVERSION AND GRIND REFERENCE TABLE					
U.S. Mesh	Tyler Mesh	Inches	Microns	Grind*	
4	4	0.1850	4699		
5	5	0.1560	3962		
6	6	0.1310	3327		
7	7	0.1100	2794		
8	8	0.0930	2362		
10	9	0.0780	1981	Extract Grinds and	
12	10	0.0650	1651	French Press	

Size Conversion and Grind Reference Table

	12	10	0.0000	1001	110101111033	
SIZ	ZE COI	VERSIO	N AND C	grind f	EFERENCE TA	BL
U.S.	Mesh T	yler Mesh	Inches	Micror	s Grind*	
2	25	24	0.0276	701	Fine Grin	nd
	35	32	0.0195	495	Espresso Coarse	
	40	35	0.0164	417	Vending	
	45	42	0.0138	351	Espresso Fine	
	50	48	0.0116	295		
	60	60	0.0097	246		
	70	65	0.0082	208		
	80	80	0.0069	175	Coarse Turkish	
	100	100	0.0058	147		
	120	115	0.0049	124	Medium Turkish	
	140	150	0.0041	104		
	170	170	0.0035	89	Fine Turkish	
	200	200	0.0029	74		
	230	250	0.0024	61		
	270	270	0.0021	53		
	325	325	0.0017	43		
	400	400	0.0015	38		
	Moder	n Process	Equipment	t, Inc. Chi	cago, Illinois USA	
					*=Average Particle Size	

Available online at: www.mpechicago.com/coffee

Segregation

Once coffee is ground, care must be taken so that the particles don't "declassify" between the grinder and the package, pod or other delivery container.

Segregation

Segregation Video Courtesy of Jenike and Johanson, Inc. Espresso and Single-Cup Serving methods are the toughest grinds to achieve!

Brewer Examples

Keurig K Cup

Filter-Type Packages

... or shaped like these

Brewing Dynamics	1 Pod/8 oz. cup	Equivalent Coffee Pack for 64 oz. Brew	Ratio
Coffee Weight	9 grams	3.75 oz.	1/12th the weight
Water Pressure (psi)	10 – 70	Gravity: 0.1 – 0.5	
Brew Time	10 – 15 sec.	3 – 6 min.	
Grind Size (microns)	400 - 600	800 – 900	

Brewing Dynamics	1 Pod/8 oz. cup	Equivalent Coffee Pack for 64 oz. Brew	Ratio
Coffee Weight	9 grams	3.75 oz.	1/12th the weight
Water Pressure (psi)	10 – 70	Gravity: 0.1 – 0.5	130 times the water pressure
Brew Time	10 – 15 sec.	3 – 6 min.	
Grind Size (microns)	400 - 600	800 – 900	

Brewing Dynamics	1 Pod/8 oz. cup	Equivalent Coffee Pack for 64 oz. Brew	Ratio
Coffee Weight	9 grams	3.75 oz.	1/12th the weight
Water Pressure (psi)	10 – 70	Gravity: 0.1 – 0.5	130 times the water pressure
Brew Time	10 – 15 sec.	3 – 6 min.	1/20th the time
Grind Size (microns)	400 - 600	800 – 900	

Brewing Dynamics	1 Pod/8 oz. cup	Equivalent Coffee Pack for 64 oz. Brew	Ratio
Coffee Weight	9 grams	3.75 oz.	1/12th the weight
Water Pressure (psi)	10 – 70	Gravity: 0.1 – 0.5	130 times the water pressure
Brew Time	10 – 15 sec.	3 – 6 min.	1/20th the time
Grind Size (microns)	400 - 600	800 – 900	1/2 the grind size

A pod grind is one of the most technical and <u>challenging</u> grinds, yet is typically produced on the most basic, limited grinder as a matter of convenience.

The grind must be the <u>correct size</u> and <u>uniformity</u> to produce a comparable coffee brew!

Now let's take a closer look at Espresso Grinding:

Two apparently contradictory needs must be satisfied to prepare a good cup of espresso:

- 1) On the one hand, a short percolation time is required;
- 2) On the other hand, a high concentration of soluble solids must be reached.

... Both requirements can only be attained if a close contact between solid particles and extraction water can be achieved.

Thus, espresso percolation needs a plurimodal particle size distribution, where the finer particles enhance the exposed extraction surface (chemical need) and the coarser ones allow the water flow (physical need).

Let's look at an espresso particle distribution using an electron microscope.

Upon further magnification, we can see the cellular structure and hexagonal structure in more detail, as well as the "fines" which are an essential and integral part of espresso grinding.

We can also see the rupture of the cellular walls, which are 30 um in diameter, which is the same size as the "superfines" that are a required element in espresso grinding.

Ideal Espresso Grinding

It is typically desirable to generate "fines" (20-40 um) when grinding for espresso to promote the proper infusion.

How do you determine the optimal grind for your application?

- Use a grind reference document (SCAA, MPE, etc.) to determine the correct grind for your application or, alternatively:
- 2) Perform a grind test using the ro-tap, hand ro-tap or laser method to ensure that your actual grind matches your target.
 - 3) In conjunction with the above, utilize a soluble solids tester* to establish:
 - Your brewed solids and;
 - Your desired grind to achieve or maintain those brewed solids.
 - * Either a hydrometer or soluble solids "Ultrameter" can be used for the above.

Questions?

